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TIME DEPENDENT SOLIDIFICATION OF BINARY MtXTURES*

Bruno A. Boley
Technological Institute , Northwestern University
Evanston, Illinois

Abstract

The problem of change of phase in a binary mixture is considered under arbi-
trary cooling or heating on the surface. Significantly different behavior is
noted between the known solution for a sudden jump in surface temperature and
other cooling histories . The solution is presented in series form, and a
numerical example is given .6

Introduction

The problem of solidification (or melting) of mixture s has received attention
for a number of years both from fundamental and practical points of view
(cf.[l]). Analytical solutions of the corresponding coupled heat and mass
transfer boundary-value problem have been discussed for semi-infinite bodies
ur~~~ sudden changes of surface temperature (e.g.[2,3,4)). The response to
these special conditions has been found to be characterized by similarity, and
by constancy of concentration in the solid , and of both phases at the inter-
face. This behavior cannot be expected to prevail in any more complex pro-
blem, whether the additiona l complexity be due to different cooling histories ,
different geometrical configurations or other effects. The purpose of the pre-
sent work is to examine the problem of a semi-infinite slab, solidifying under
arbitrarily time-dependent cooling conditions at the surface , and to derive a
solution valid for short times after the start of solidification . In partic-
ular , it is noted that the special behavior alluded to earlier is not exhib-
ited in the present solution.
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Formulation of the Problem

Consider a slab (O’~c~L), initially (t 0) liquid with temperature TL0 
and with

solute concentration C~~, under presecribed cooling conditions at x—0 and (to

fix ideas) insulated and with no mass transfer at xL . Solidification will

start at x~0 at a time t ,i.e., when the temperature reaches the value

T (t ) =T  -mCm m  o to (1)

where [2] T = T - mC
L 

is the equation of the liquidus curve in the (linearized)

phase diagram of the binary mixture in question. The pre-solidification solu-

tion is easily obtained by standard methods [5J , since it does not involve any
coupling between heat and mass flow, and in fact corresponds to

Ct
(x ,t) C

L 
t�t (2)

For t>t , the solid phase will occupy the space O~~<s(t), and the problem is

then described by the following equations (for properties constant but not

necessarily equal in the solid and the liquid):

Field equations:

KL
T
L
” - pc~T1 - 0 ; DCL” - C

L 
0 in s(t) ~c~L (3)

ICsTs” - pc5
T
5 

— 0 ; DC
C
” - — 0 in 0~~c<s (t) (4)

Boundary conditions (for example):

_K
sTs

’(O,t) — Q (t) or Ts
(O ,t) Ts0(t); C

s
’(0

~
t) 0 (5)

_K.
L
T
L

’(L ,t) QL
(t) or T

L
(L,t) = TLL(t); c

L
(L ,t) = 0 (6)

Interface conditions :

T
L
(5,t) T

s
(s
~
t) — T ( t ) a T - 

~
cL (s ,t ) ;  c

~
(s
~
t) kC

~
(s ,t) (7)

Ks
T
s
’ - KL

T
L
’ — ph ; D

sCs
’ - D

L
C
L
’ (1-k) C

L
S at x — s(t) (8)

To these, initial (t
~
tm
) conditions must be added , stipulating that temperature

and concentration are continuous at t
~
tm 

and that

s(t ) — 0 (9)

In the above equation k is the partition coefficient, and the other symbols
have obvious meanings (cf.C21)

Basic Considerations

It is convenient , in order to construct a solution to eqs. (3) to (9) , to begin
with some general considerations based on experience with the analogous un-

coupled heat conduction problem. This eliminates the necessity of employing a

direct method of solution (e.g., the embedding technique[6)) which, although
applicable to the coupled problem, is likely to be rather cumbersome , What
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w i l l  then be used wi l l  be an inverse method , that is one in which the form of

the solut ion is assumed at the outset , and it is then shown that all conditions

of the problem can be satisfied on the basis. To complete the solution it is

then necessary to show that the solution thus found is the only possible one.
The appropriate uniqueness theorem will  be presented in a subsequent publi-

cation and is not considered here.

We first note that , in the uncoupled problem , a distinction must be made [7]

depend ing on whether

u r n  ~(y)/.5 0 or u r n  ~(y)/.Jy ~ 0 (10)
~~0

where
s(t)

~(y) — 

~~~ 
y — ( t/ t ) - 1 (l0a)

The second of (10) is satisfied by the similarity solution earlier mentioned,

which is a direct extension of the classical Neumann solution [5) of Stefan’s

problem. We note that, in both uncoupled and coupled solutions of this type,

the form of ~ is the same, i.e., ~ = ~~~~ for y4l, where X is a constant. We

will return t~ that problem later; our present aim is the discussion of prob-

1cm. characterized by the first of (10), and we shall assume that there too

the form of ~(y) is unchanged by coupling.

The form of the function g(y) is known in a number of cases. The starting

solution (i.e., the first term of series expansion) is know for any arbitrary

cooling history [7]. For the general class of problem in which the surface

heat flux is expressible in a series of a half- integral  powers of y,  it is

found [7) that ~(y) is also so expressible, 
while for the companion problem in

which the surface temperature is so expressible , ~(y) requires [8] a series in

powers of yk• Let us consider the former of these classes of problems , and

assume that the heat flux is continuous; then [7] gives

~(y) — ~ ~~~ (n+3)/2 (11)

n 0

Inspection of the second of eq.(8) can now be used to guess the first term

of a series representation for the concentration. The right-hand side of

that equation is proportiona l to é , or , with (ii), initially proportional to

if. Henc. it is reasonable to expect that the concentration be distributed,

for short times, in the manner corresponding to a surfac. flux also proportional
to ff~ or

— 3—
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1)X,Y) 2
— 1 + C~2YI erfc (XB

L6/J~
) for y4l (12)

where

x = 

~~~~ 

; B
~~s 

— 
~/ PC L S /DL S  6 — 

~s#’~
(i. (13)

For C~ we write a similar expression, but imaged about X — 0 so as to satisfy

(5),  or , still for y4l,

Cs
(X ,Y) 

= + ~~S2 yCi
2 r fc (XB /5) + i2er fc ( -X B5/.fl)] (14)

where the last of (7) requires that C~ — kCLo
, and where the factor k/2 has

been introduced for future convenience.

To extend the solution, it is again conjectured that a series in half-integra l

powers of y is appronriate, or
C (X,y) /2L 

= ~ + L C~~y~ i~er fc (XBL6/.5 ) (l5a)
n=2

C (X ,y) /2
= + 

~i ‘~sn~’~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (15b)Lo n—2

Similar argruments may now be applied to the first of eqs.(8) to obtain the

form of the temperature functions. In this case, one must be careful however

to add particular solutions of (3) and (4) which will insure satisfaction of

the non-homogeneous boundary conditions (5). The simplest way of achieving

this is to employ [6,9] the analytic continuation T(X ,y) , into the post-
solidification period, of the pre-solidification solution. Thus

T Q ~,y) T /2
V
L

(X ,y) 
T
1~4,
-T (t )  

= 
T~ ,-T (t )  

+
~~~

TthY i
nt
erfc(Xô/.fl) (16a)

T~ Oc~~) *
_________ T cx v)vs Oc ,y) T -T (t ) 

— 
T -T (t ) 

+
Lo m m Lo m

4~~T~~y5 l2[i0erfc (x/,5) + i°erfc(_X/5)] (l6b)
n—2

Eq..(15) and (16) satisfy all conditions of the problem, with the exception of
the conditions to be sati sfi.d at the solid-liquid interface, namely (7) and
(8). In dimensionless for , the.. take th. following form (the arguments

~
,y being understood throughout):

—4 —
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/ CL \
V~ = V~ = V~~1 - A (17a ,b)

(\
C
S
/C
L~~

; = k(\
C
L
/
~L 

(17c)

- = .~E ~ (l i d )

~~
C
S
/C
L ) 

- (

6Bs~ ~(cL
/cLO) 

= 4B
s
2(l

~
k) ~~ (17e)

where the dimensionless notation:

crT -T (t )i mC T
~~~~~~ LL0 m Lf , A = — ~~ 

•
~~~~ = 

0

2 ‘ T ‘ 0 T —T (t) ’
0 to m

2 
(18)

~L
“EL ’ Ds

The five sets of coefficients 
~~
,CL 

,CS~~
T
L ~

TSn must be adjusted so as to

satisfy the five equations (17a-e).

Solution and Discussion

The solution now requires the substitution of (1l),(15) and (16) into

(lia-e); separation of the resulting equations into terms of like powers of y,

then gives sets of equations from which the unknown coefficients can be derived.

The process is straight forward but rather laborious, since it requires expan-

sion in powers of y of the several integrated error functions, whose arguments

themselves are power series. The details of the process will be omitted, but

it may be noted that the calculations fall in a distinct pattern. It is con-

venient to consider first the highest-order terms in eqs. (17a,d,e); these
yield three simultaneous equations for (

~o~
CL2~TL2), and the coeff icients

are then found from (lib,c) respectively. The pattern repeats for

further coefficients: a set of three simultaneous equations for (
~l

ICL3,TL3)
results from the next-order terms in (l7a,d,e), with (T531Cs3) obtained again
from (17b.c), and so forth.

As an example, the case of a constant flux Q0 at x—0 was considered in detail.
Here

Tt0
=T(t) 

- 
T
o
_T

rn(tm)
- ~/TiCI~~~’) 

ierfc~~~~~ (19)

-5—
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and the following results are obtained (for simplicity we take 6 = = 1 and

First-order terms : 1
° .~1!+ 3J~~B( l-k)AV

M ° (20a)
CL2 

= C~2 
= 6~,~~B(l-k)~ ; ~~~ = T

~2 
= 3rr~~/M

Second-order terms : -3ir~

~1 8
+ 16(1-k)BAVM ° (20b)

CL3 
= C~3 

= 32(l-k)B~1 
; T~3 = T

s3 
=

Third-order terms:

48.~r ~ 
2+2M(3 ~~~-l)+3TT

3”2
~~(j.- +2(i-k)BAV 0M 3~~ +3B2AV M( 1 k) ~

2[32-15rr( 1-k) ]

lSTT + 30~J~~A V B M(l-k)

CL4 = 30~fiF(l-k)B 2~ 2 + 3~j~TB(l-k)~~
2

, ; C~4 
= C~~ - 192B2~~

2(1-k)
(20c)

= 

~~~~~~ 
+ (3sf 

~~~~ 

- 
~~~~~~. 

; T~~ = - 96~Jff ~~
2

/M

and so forth. Some comments on the above solution may be useful.

The method employed for the solution makes it clear why a distinction must be

made depending on which of eqs.(10) holds. In fact, when (as at present) the
first  of (10) is valid , the various error-function integrals tend , as y-0 and

on X — ~(y) , to constants independent of the problem parameters. When the

second of (10) holds , in contrast , the error functions are dependent on the

proportionality constant X between ~ and .J .  This implies, for example, that
C
~
(
~
,y)-.f(X) as y-.O, and therefore Trn(t) is also dependent on X. The quantity

A would appear in all equations, and the present separation of the several equa-

tions would no longer be possible. The procedure followed here could of course

still be employed, but it would be much more cumbersome. It is rather more con-

venient to solve the problem separately in these cases, as indeed was done in

[2,3,4).

The present solution reduces to the uncoupled one [9] if either A—o or k—i; in

all other cases the form of ~ is the same but the coefficients differ. The

concentration of the interface, given by

C
L
(
~~

Y) 
— ~ 

c~()~~~ 
- 1 + ~~~y + ~~~~ y

’
+ 

~

— - ~~~c~2 ) )‘
2 
+ ...(21)

exhibit.(Fig.i)a gradual increase from its initial value. Note that the concen-

tration in the solid is not uniform.

-6- 
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LIST OF SYMBOLS

Symbols listed in the [brackets] are dimensionless , and are defined in the
equations indicated .

[A , eq.(18)] parameter characterizing the liquidus line
[B, eq.(13)]  =

C •  specific heat
C mass—fraction of solute
D diffusion coefficient
f function
k. partition coefficient
K  thermal conductivity
£  latent heat of fusion
L .  thickness
In . . . . . . .  . • .. .slope of liquidus line
[14, eq. (18)]  principal fusion parameter
Q  .....heat flux
s, [~

, eq. (lOa)J ..  . . ....position of solid—liquid interface
t, [y, eq. (lOa)3.......... .....time
T, [V, eqs~l6)). .  ... . . . .temperature
x, {X , eq.(l3)J ....distance from exposed surface
[a, eq. (13)) . . . . .
[ri, eq. (l8)J ratio of liquid to solid diffusivities  

dif f usiv ity
[x] simila r ity coefficent in cons tant

temperature solution
p .densi ty

Fig.l. Variation of interface concentration Ct (
~

,y) — 2Cs(~
sY) and of

interface position g(y) with time.
H — 0.1; k - A - 0.5; ~ — 6 — 8~ BL V — 1

-7-
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